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Reaction-pathway control of benzo[b]thiophen-3-yllithium
and benzo[b]furan-3-yllithium was accomplished in flow micro-
reactor systems. We could switch between the reaction with an
electrophile before ring-opening and that after ring-opening at
will by choosing an appropriate residence-time and temperature.

Chemical synthesis in flow microreactor systems has
received significant research interest from both academia and
industry.1,2 Recent investigations revealed significant features
of flow microreactor systems including fast mixing stemming
from short diffusion path and fast heat transfer by virtue of
high surface-to-volume ratio. Such features often enhance the
selectivity of chemical reactions. Short residence time in a micro
channel is beneficial for controlling highly reactive intermedi-
ates. By taking advantage of such features of flow microreactor
systems, various chemical reactions for organic synthesis have
been developed so far.3 Flow microreactors are also effective
for integration of reactions to enhance the power of organic
synthesis.4

Recently, we have reported that the generation of highly
reactive aryllithium compounds based on halogenlithium
exchange followed by reactions with electrophiles could be
conducted in flow microreactor systems.5 We have also studied
generation and reactions of heteroaryllithiums because they
serve as important reagents for synthesis of pharmaceuticals
and functional materials.6 During the course of our studies on
synthesis of photochromic diarylethenes7 using flow micro-
reactor systems, we observed that heteroaryllithiums generated
by the halogenlithium exchange reaction of 3-bromo-2-meth-
ylbenzothiophene and 3-bromo-2-methylbenzofuran underwent
the ring-opening reaction shown in Scheme 1.8 In connection
with our interest in extending the synthetic potential of the flow
microreactor method, we studied this in detail, and herein we
report that the reaction pathways can be switched at will based
on residence-time and temperature control in a flow micro-
reactor.

A flow microreactor system consisting of two T-shaped
micromixers (M1 and M2) and two microtube reactors (R1 and
R2) shown in Figure 1 was used for halogenlithium exchange
reaction of 3-bromo-2-methylbenzothiophene followed by the
reaction of an electrophile. To get deeper insight into the
conditions that control the reaction pathways, the reactions were
carried out with varying residence time (tR) in R1, and
temperature (T).

The results obtained with 3-bromo-2-methylbenzothiophene
and iodomethane are summarized in Figure 2 (See the Support-
ing Information for details9). In Figure 2a, the conversion of the

starting material is plotted against the temperature (T) and the
residence time in R1 (tR) as a contour map with scattered
overlay. In the low temperature (T < 0 °C)short residence time
(tR < 0.1 s) region, the starting material remained unchanged to
some extent because halogenlithium exchange is rather slow at
low temperatures. In Figure 2b, the yields of the methylated
product, 2,3-dimethylbenzothiophene are plotted against T and
tR. High yields were obtained with longer residence times at low
temperatures (such as tR > 1.0 s, T < ¹28 °C). The increase in T
caused the decrease in the yield presumably because the ring-
opening reaction of benzo[b]thiophen-3-yllithium intermediate
took place. In fact, at higher temperatures (T > 0 °C), the
product derived from the ring opening, 1-methylsulfanyl-2-
(prop-1-ynyl)benzene was obtained in good yields (Figure 2c).
Therefore, we can control the reaction pathways by choosing
an appropriate temperatureresidence time. For example, 2,3-
dimethylbenzothiophene, the product derived from the benzo-
[b]thiophen-3-yllithium without ring opening was obtained in
86% yield at tR = 1.6 s and T = ¹48 °C, while 1-methylsulfan-
yl-2-(prop-1-ynyl)benzene, the product derived from ring open-
ing was obtained in 78% yield at tR = 3.1 s and T = 24 °C.
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Scheme 1. Control of ring-opening reaction of benzo[b]thio-
phen-3-yllithium and benzo[b]furan-3-yllithium.

Figure 1. A flow microreactor system for the halogenlithium
exchange reaction of 3-bromo-2-methylbenzothiophene or 3-
bromo-2-methylbenzofuran with n-BuLi followed by reaction
with iodomethane (X = S) or methanol (X = O). T-shaped
micromixers: M1 and M2, microtube reactors: R1 and R2.
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Next, the halogenlithium exchange reaction of 3-bromo-
2-methylbenzofuran followed by reaction with methanol was
examined using the flow microreactor system. As shown in
Figure 3a, the conversion of the starting material indicates
that halogenlithium exchange of 3-bromo-2-methylbenzofuran
is slower than that for 3-bromo-2-methylbenzothiophene
(Figure 2a), although quantitative conversions were obtained at
high temperaturelong residence times. The high yield region

for 2-methylbenzofuran, the product derived from benzo[b]-
furan-3-yllithium without ring opening (Figure 3b) is slightly
smaller than that for 2,3-dimethylbenzothiophene (Figure 2b),
implying that benzo[b]furan-3-yllithium intermediate is slightly
less stable than benzo[b]thiophen-3-yllithium. At high temper-
aturelong residence times, 2-(prop-1-ynyl)phenol, the product
derived from the ring-opening of benzo[b]furan-3-yllithium was
obtained in good yields (Figure 3c).

Figure 4 clearly demonstrates the difference in the reactivity
between benzo[b]thiophen-3-yllithium and benzo[b]furan-3-yl-
lithium; the former is produced within 0.01 s while the latter is
produced more slowly because the halogenlithium exchange is
slower, but the latter isomerizes more rapidly through the ring
opening. The reason for the difference in reactivity is not clear at
present.

In conclusion, we have demonstrated that the precise control
of the residence time and the temperature in a flow microreactor
system enables the switch of the pathway of the reactions
involving heteroaryllithiums. It is also important to note that the
residence timetemperature maps serve as powerful tools for
analyzing behavior of reactive intermediates. Further work is in
progress to explore the full range of reactivity of heteroaryl-
lithium species and to develop synthetic applications of such
useful intermediates.
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Figure 3. Temperatureresidence time (in R1) map for the
halogenlithium exchange reaction of 3-bromo-2-methylbenzo-
furan with n-BuLi followed by reaction with methanol: (a)
Contour plot with scatter overlay of the conversion of 3-bromo-
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yield of 2-methylbenzofuran, and (c) contour plot with scatter
overlay of the yield of 2-(prop-1-ynyl)phenol.
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residence time (tR) at ¹28 °C in the flow microreactor system:
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